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ABSTRACT
Image registration algorithms provide a displacement field between
two images. We consider the problem of estimating accuracy of the
calculated displacement field from the input images only and with-
out assuming any specific model for the deformation. We compare
two algorithms: the first is based on bootstrap resampling, the sec-
ond, new method, uses an estimate of the criterion Hessian matrix.
We also present a block matching strategy using multiple window
sizes where the final result is obtained by fusion of partial results
controlled by the accuracy estimates for the blocks involved. Both
accuracy estimation methods and the new registration strategy are
experimentally compared on synthetic as well as real medical ultra-
sound data.

Index Terms— image registration, accuracy estimation, boot-
strap

1. INTRODUCTION

Image registration is an essential tool for many computer vision tasks
such as 3D reconstruction from stereo or motion, motion analysis,
motion compensation, and video compression [1]. In medical imag-
ing, it is used for intra-subject, inter-subject, and inter-modality anal-
ysis; change, growth, and motion detection and quantification [2].

The accuracy of an image registration procedure can be deter-
mined using ground truth data [3, 4, 5], a posteriori from the resid-
uals for low-rank transformations [6], or heuristically [7, 8], of-
ten based on the correlation value. For Gaussian noise and sim-
ple transformations, the performance limits can be found theoreti-
cally [9, 10].

We consider the problem of estimating the local accuracy of the
recovered displacement field in the case when no ground truth is
available and without assuming any specific model for the defor-
mation. It is useful for any subsequent processing to determine to
what extent the recovered displacement information can be trusted
and thus the weight a particular region should be given. We are
especially interested in the problem of elastography [11] where the
tissue mechanical properties are estimated from the displacement.

Here we propose a new estimation method named FRAE (Fast
Registration Accuracy Evaluation) based on evaluating the uncer-
tainty of the image similarity criterion and its local quadratic ap-
proximation. It requires essentially no computational overhead. We
compare it with a previously proposed bootstrap based method [12].
For simplicity, we consider only a block matching approach to im-
age registration. However, both methods can be applied to almost
any image registration algorithm based on minimization of an image
similarity criterion.
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2. BLOCK MATCHING AND BOOTSTRAP

Block matching registration ([13] and many others) partitions the
image into a set of overlapping rectangular blocks. For each block

an optimal parameter θ̂ ∈ R
d of the transformation Tθ is determined

by minimizing a criterion J . In our case an SSD criterion is used
and Tθ is a translation Tθ(x) = x + θ:

θ̂ = arg min
θ

J(θ) (1)

J =
X
x∈Ω

`
f
`
x
´− g

`
Tθ(x)

´´2

| {z }
e(x)

(2)

with f and g being images to register and Ω the set of pixels in

a block. We attempt to determine the statistical properties of θ̂, first
by the bootstrap method [12], which we recall here briefly: A boot-
strap resample Ω(b) is obtained by selecting N = |Ω| pixels from

Ω with replacement. For each of the M multisets Ω(b), an estimate
θ(b) is obtained by minimization (1). The set of M vectors θ(b) is
used to calculate the bootstrap estimates of the mean and covariance,
μθ̂ ≈ mean θ(b), Cθ̂ ≈ var θ(b), and the geometrical error ε2

ε2 = E

»
mean
x∈Ω

‖Tθ̂(x)− Tθ∗(x)‖2
–

= trCθ̂ (3)

where θ∗ is the true parameter value.

3. FAST REGISTRATION ACCURACY ESTIMATION

Our new method (FRAE) analyzes the uncertainty of the criterion
value J and uses the shape of the criterion function J(θ) to trans-

late it into the uncertainty on θ̂. The simplifying assumption is that
the criterion function and the error in parameters are approximately
normally distributed. This leads to a simple and computationally
efficient algorithm.

3.1. Uncertainty of the criterion

We quantify the uncertainty of J for a fixed θ by determining a con-
fidence interval around the observed value J , where J∗ is the ideal
noiseless value and α = 0.05 the confidence level:

P
ˆ
J∗ − γ ≤ J ≤ J∗ + γ

˜
= 1− α (4)

γ = Φ−1(1− α/2) σJ ≈ 1.96 σJ

where we assume the normality of J , Φ−1 is the inverse normal cu-
mulative distribution function and σ2

J = Var
ˆ
J
˜
. Many similarity

criteria, including SSD (2), can be expressed as a sum of approx-
imately independent and identically distributed (i.i.d) terms e(x),
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provided that the pixel noise is also i.i.d. Then σJ can be estimated
as

σ2
J = N Var

ˆ
e
˜ ≈ X

x∈Ω

`
e(x)− 1

N

X
x∈Ω

e(x)
´2

(5)

To improve the estimate in low amplitude regions, we can add
a noise due to quantization:

σ2
J = N Var

ˆ
e
˜
+ Nσ2

Q (6)

where σ2
Q = δ2/12 is a variance of a uniformly distributed noise in

interval
ˆ−δ/2, δ/2

˜
.

3.2. Uncertainty of the parameter θ̂

The second step is to convert the uncertainty in J into the uncertainty

in θ̂. Consider a small neighborhood around θ̂. Assume that the true

minimum is reached for θ∗, so J∗(θ∗) ≤ J∗(θ̂). From (4) we have
with probability 1− α

J(θ∗)− γ ≤ J∗(θ∗) and J∗(θ̂) ≤ J(θ̂) + γ

which yields a condition for θ∗, with probability (1− α)2

J(θ∗) ≤ J(θ̂) + 2γ (7)

We approximate the criterion function J(θ) quadratically

J(θ) = J(θ̂) +
1

2
(θ − θ̂)T H(θ − θ̂) (8)

Luckily, this approximation is available to us for free, since the min-
imization of (1) is performed by a quasi-Newton optimizer that iter-
atively updates the estimate of H−1 using the BFGS strategy [12],
such that H is positive definite by construction. From (7) and (8) we
have

P
ˆ
(θ∗ − θ̂)T H(θ∗ − θ̂) ≤ 4γ

˜
= (1− α)2 (9)

We find a covariance Cθ̂ that a normally distributed θ̂ would
have, given (9). If a zero mean normally distributed random variable
z has a covariance C then zT C−1z is χ2

d distributed with d = dim z
and its confidence region is

P
ˆ
zT C−1z ≤ F−1(β; d)

˜
= β (10)

where F−1 is the inverse cumulative χ2
d distribution function. Com-

paring (9) and (10) we get

CFRAE

θ̂ =
4γ

F−1
`
(1− α)2, d

´H−1 = λσJH−1
(11)

As an example, for α = 0.05 and d = 2 we get λ ≈ 1.68.

3.3. Experiment 1 — Error with respect to noise

We take a 5122 pixel 8 bit grayscale Lena image, shift it by a uni-
formly distributed random vector with a maximum amplitude of 0.5
pixels in two opposite directions, add a Gaussian noise with standard
deviation σ to both shifted images, and register a 602 pixel center
part by minimizing (1,2). The geometrical error ε (3) was evaluated
using the bootstrap and FRAE (11) estimates of the covariance C.
The experiment is repeated 100 times for each σ (Figure 1). For
noise levels up to σ = 10 (SNR=28 dB), FRAE performs very well,
while the bootstrap underestimates. For higher noise levels bootstrap
accuracy improves significantly, while FRAE suffers from underes-
timation. This is because at high noise levels the criterion function
is rough and has high local curvature, leading to an overestimation
of the Hessian.

10−1 100 101 102
10−3

10−2

10−1

100

101

sigma

ef
fe

ct
iv

e 
er

ro
r [

pi
xe

ls
]

true
FRAE
bootstrap

Fig. 1. Mean effective error ε as a function of the noise standard
deviation σ — the true value compared with the bootstrap and FRAE
estimates.

0 50 100 150
10−2

10−1

100

101

102

window size

es
tim

at
ed

 g
eo

m
et

ric
al

 e
rr

or

FRAE
bootstrap
true

Fig. 2. An ultrasound phantom image (top). Block size versus the
true and estimated geometrical error, estimated by bootstrap and the
FRAE methods (bottom).

3.4. Experiment 3 — Block size

In Figure 2 we show how registration accuracy for the block match-
ing depends on the block size for an ultrasound phantom image de-
formed by a known deformation [12]. We see that the registration
performance is low for very small block sizes (9 pixels), reaches
optimum for width equal to 17 pixels and then the gradually deterio-
rates again for increasing block sizes because of the inhomogeneity
of the deformation field. Both bootstrap and FRAE capture this be-
havior well, FRAE being better in localizing the minimum, while
bootstrap predicts better its value.
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4. MULTIPLE BLOCK SIZE MATCHING

We perform the matching for several block sizes and then obtain the
final result by combining partial results based on the uncertainty in-
formation. We start with a block corresponding to the whole image
and progressively subdivide it, maintaining a half-size overlap for
blocks at the same level. The subdivision can be terminated when the
estimated geometric error ε of a block fails to improve with respect
to its parent. The pruning accelerates the algorithm about 3 times
but occasionally leads to premature termination. We use a multires-
olution strategy for each block to improve robustness and speed.

4.1. Combining results from different blocks

For each point x = (x, y) in the image we have a set of estimates θi

with associated covariances Ci and geometrical errors εi (3), corre-
sponding to all blocks (of different sizes) with centers (xi, yi) that
include x. The simplest strategy to obtain the final estimate θ(x) is
‘winner-takes-all’:

θ(x) = θi where i = arg min
j

εj (12)

Averaging of θi by inverse covariances corresponds to an ML esti-
mate for normally distributed measurements:

θ(x) =
`X

i

C−1
i

´−1
X

i

C−1
i θi (13)

Further smoothing is obtained by windowing:

θ(x) =
`X

i

wi(x)C−1
i

´−1
X

i

wi(x)C−1
i θi (14)

wi(x) =

„
1− κ

“x− xi

hx/2

”2«„
1− κ

“y − yi

hy/2

”2
«

(15)

where hx × hy is the block size and κ = 0.99. A simplification is
to consider only the diagonal terms of C−1

i .

4.2. Experiment 4 — Multiple block size approach

Figure 3 shows that multiple block size matching outperforms the
fixed block size approach when applied to an artificially deformed
ultrasound image (Figure 2) [12] . FRAE results are slightly better
than bootstrap; windowing (14) produces smoother fields than the
winner-takes-all strategy (12) at the expense of introducing errors at
the movement discontinuity boundary (not shown).

4.3. Experiment 5 — Real images

We register an ultrasound image from Figure 2 with an image from
the same sequence, acquired after pressure was applied from the top
(Figure 4). The block-matching approach produces many artifacts
around the cyst. The bootstrap-based multilevel approach produces
the smoothest looking results. However, the registration is incorrect
inside the cyst, where the bootstrap is too confident. The FRAE-
based multilevel result is similar, except that the displacement field
is interpolated also in the cyst region. The FRAE registration took
about 15 minutes (5 minutes with pruning) while the bootstrap took
over 2 hours.

0

5. CONCLUSIONS

We have presented a new, fast and practical method to estimate im-
age registration accuracy, called FRAE. We found experimentally
that FRAE often outperforms the bootstrap method, even though it
is less general in theory. It is not yet possible to estimate the absolute
registration error reliably. However, relative comparison of registra-
tion errors within the same image or to study the effect of registration
parameters starts to be feasible.
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Fig. 3. Recovered deformation and a true geometrical error of the block size registration on an ultrasound image pair with a known synthetic
deformation: (a) fixed block-size matching, and (b) multiple block-size matching with a FRAE estimator and windowing. (We recommend
looking at color versions of Figures 3 and 4 available in the electronic version of this paper.)
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Fig. 4. Horizontal (top row) and vertical (bottom row) displacement from a pair of real ultrasound images. A pressure was applied from the
top. Block matching (left), multiple block size with bootstrap (middle) and FRAE (right).
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